1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
//
// Copyright (c) 2017, 2020 ADLINK Technology Inc.
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
//! A Unique Hybrid Logical Clock.
//!
//! This library is an implementation of an
//! [Hybrid Logical Clock (HLC)](https://cse.buffalo.edu/tech-reports/2014-04.pdf)
//! associated to a unique identifier.
//! Thus, it is able to generate timestamps that are unique across a distributed system,
//! without the need of a centralized time source.
//!
//! # Quick Start
//!
//! ```
//! use uhlc::HLC;
//!
//! // create an HLC with a generated random ID and relying on SystemTime::now()
//! let hlc = HLC::default();
//!
//! // generate timestamps
//! let ts1 = hlc.new_timestamp();
//! let ts2 = hlc.new_timestamp();
//! assert!(ts2 > ts1);
//!
//! // update the HLC with a timestamp incoming from another HLC
//! // (typically remote, but not in this example...)
//! let hlc2 = HLC::default();
//! let other_ts = hlc2.new_timestamp();
//!
//! if ! hlc.update_with_timestamp(&other_ts).is_ok() {
//! println!(r#"The incoming timestamp would make this HLC
//! to drift too much. You should refuse it!"#);
//! }
//!
//! let ts3 = hlc.new_timestamp();
//! assert!(ts3 > ts2);
//! assert!(ts3 > other_ts);
//! ```
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://atolab.github.io/uhlc-rs/"
)]
#![cfg_attr(not(feature = "std"), no_std)]
extern crate alloc;
use alloc::{format, string::String};
use core::cmp;
use core::time::Duration;
#[cfg(feature = "std")]
use {
lazy_static::lazy_static,
std::env::var,
std::sync::Mutex,
std::time::{SystemTime, UNIX_EPOCH},
};
#[cfg(not(feature = "std"))]
use spin::Mutex; // No_std-friendly alternative to std::sync::Mutex
mod id;
pub use id::*;
mod ntp64;
pub use ntp64::*;
mod timestamp;
pub use timestamp::*;
/// The size of counter part in [`NTP64`] (in bits)
pub const CSIZE: u8 = 4u8;
// Bit-mask of the counter part within the 64 bits time
const CMASK: u64 = (1u64 << CSIZE) - 1u64;
// Bit-mask of the logical clock part within the 64 bits time
const LMASK: u64 = !CMASK;
// HLC Delta in milliseconds: maximum accepted drift for an external timestamp.
// I.e.: if an incoming timestamp has a time > now() + delta, then the HLC is not updated.
const DEFAULT_DELTA_MS: u64 = 500;
#[cfg(feature = "std")]
lazy_static! {
static ref DELTA_MS: u64 = match var("UHLC_MAX_DELTA_MS") {
Ok(s) => s.parse().unwrap_or_else(|e| panic!(
"Error parsing environment variable ${{UHLC_MAX_DELTA_MS}}={} : {}",
s, e
)),
Err(std::env::VarError::NotPresent) => DEFAULT_DELTA_MS,
Err(e) => panic!(
"Error parsing environment variable ${{UHLC_MAX_DELTA_MS}}: {}",
e
),
};
}
#[cfg(not(feature = "std"))]
static DELTA_MS: &u64 = &DEFAULT_DELTA_MS; // Environment variables do not make sense in no_std environment
///
/// The builder of [`HLC`].
///
/// # Examples
///
/// ```
/// use std::{convert::TryFrom, time::Duration};
/// use uhlc::{HLCBuilder, ID};
///
/// let default_hlc = HLCBuilder::new().build();
/// println!("{}", default_hlc.new_timestamp());
///
/// let custom_hlc = HLCBuilder::new()
/// .with_id(ID::try_from([0x01, 0x02, 0x03]).unwrap())
/// .with_max_delta(Duration::from_secs(1))
/// .build();
/// println!("{}", custom_hlc.new_timestamp());
pub struct HLCBuilder {
hlc: HLC,
}
impl HLCBuilder {
///
/// Constructs a new HLCBuilder for the creation of an [`HLC`], with the following default configuration:
/// * a random u128 as HLC identifier.
/// Can be changed calling [`Self::with_id()`].
/// * [`system_time_clock()`] as physical clock (i.e. the ).
/// Can be changed calling [`Self::with_clock()`].
/// * 500 millisecond as maximum delta (i.e. the maximum accepted drift for an external timestamp).
/// Can be changed calling [`Self::with_max_delta()`].
///
pub fn new() -> HLCBuilder {
HLCBuilder::default()
}
///
/// Configure a specific identifier for the HLC to be created.
///
/// **NOTE: the identifier must be unique in the system.**
///
pub fn with_id(mut self, id: ID) -> HLCBuilder {
self.hlc.id = id;
self
}
///
/// Configure a specific physical clock for the HLC to be created.
///
/// The `clock` parameter must be a function returning a new physical time (as an [`NTP64`] at each call.
/// The time returned by this clock doesn't need to be monotonic: when the HLC generates a new timestamp from this time,
/// it first checks if this time is greater than the previously generated timestamp. If not, the new timestamp it the previous one +1.
///
pub fn with_clock(mut self, clock: fn() -> NTP64) -> HLCBuilder {
self.hlc.clock = clock;
self
}
///
/// Configure the maximum delta accepted by an HLC when updating it's logical clock calling [`HLC::update_with_timestamp()`].
///
pub fn with_max_delta(mut self, delta: Duration) -> HLCBuilder {
self.hlc.delta = delta.into();
self
}
pub fn build(self) -> HLC {
self.hlc
}
}
impl Default for HLCBuilder {
fn default() -> Self {
HLCBuilder {
hlc: HLC {
id: ID::rand(),
#[cfg(feature = "std")]
clock: system_time_clock,
#[cfg(not(feature = "std"))]
clock: zero_clock,
delta: NTP64::from(Duration::from_millis(*DELTA_MS)),
last_time: Default::default(),
},
}
}
}
/// An Hybric Logical Clock generating [`Timestamp`]s
pub struct HLC {
id: ID,
clock: fn() -> NTP64,
delta: NTP64,
last_time: Mutex<NTP64>,
}
#[cfg(feature = "std")]
macro_rules! lock {
($var:expr) => {
match $var.try_lock() {
Ok(guard) => guard,
Err(_) => $var.lock().unwrap(),
}
};
}
#[cfg(not(feature = "std"))]
macro_rules! lock {
($var:expr) => {
$var.lock()
};
}
impl HLC {
/// Generate a new [`Timestamp`].
///
/// This timestamp is unique in the system and is always greater
/// than the latest timestamp generated by the HLC and than the
/// latest incoming timestamp that was used to update this [`HLC`]
/// (using [`HLC::update_with_timestamp()`]).
///
/// # Examples
///
/// ```
/// use uhlc::HLC;
///
/// let hlc = HLC::default();
/// let ts1 = hlc.new_timestamp();
/// let ts2 = hlc.new_timestamp();
/// assert!(ts2 > ts1);
/// ```
pub fn new_timestamp(&self) -> Timestamp {
let mut now = (self.clock)();
now.0 &= LMASK;
let mut last_time = lock!(self.last_time);
if now.0 > (last_time.0 & LMASK) {
*last_time = now
} else {
*last_time += 1;
}
Timestamp::new(*last_time, self.id)
}
/// Returns the HLC [`ID`].
///
/// This ID is the specific identifier for this HLC instance.
///
pub fn get_id(&self) -> &ID {
&self.id
}
/// Returns the HLC delta as [`NTP64`].
///
/// The maximum delta accepted by an HLC when updating it's logical clock calling [`HLC::update_with_timestamp()`].
///
pub fn get_delta(&self) -> &NTP64 {
&self.delta
}
/// Update this [`HLC`] with a [`Timestamp`].
///
/// Typically, this timestamp should have been generated by another HLC.
/// If the timestamp exceeds the current time of this HLC by more than the configured maximum delta
/// (see [`HLCBuilder::with_max_delta()`]) an [`Err`] is returned.
///
/// # Examples
///
/// ```
/// use uhlc::HLC;
///
/// let hlc1 = HLC::default();
///
/// // update the HLC with a timestamp incoming from another HLC
/// // (typically remote, but not in this example...)
/// let hlc2 = HLC::default();
/// let other_ts = hlc2.new_timestamp();
/// if ! hlc1.update_with_timestamp(&other_ts).is_ok() {
/// println!(r#"The incoming timestamp would make this HLC
/// to drift too much. You should refuse it!"#);
/// }
///
/// let ts = hlc1.new_timestamp();
/// assert!(ts > other_ts);
/// ```
pub fn update_with_timestamp(&self, timestamp: &Timestamp) -> Result<(), String> {
let mut now = (self.clock)();
now.0 &= LMASK;
let msg_time = timestamp.get_time();
if *msg_time > now && *msg_time - now > self.delta {
let err_msg = format!(
"incoming timestamp from {} exceeding delta {}ms is rejected: {:#} vs. now: {:#}",
timestamp.get_id(),
self.delta.to_duration().as_millis(),
msg_time,
now
);
#[cfg(feature = "std")]
log::warn!("{}", err_msg);
#[cfg(feature = "defmt")]
defmt::warn!("{}", err_msg);
Err(err_msg)
} else {
let mut last_time = lock!(self.last_time);
let max_time = cmp::max(cmp::max(now, *msg_time), *last_time);
if max_time == now {
*last_time = now;
} else if max_time == *msg_time {
*last_time = *msg_time + 1;
} else {
*last_time += 1;
}
Ok(())
}
}
}
impl Default for HLC {
/// Create a new [`HLC`] with a random u128 ID and using
/// [`system_time_clock()`] as physical clock.
/// This is equivalent to `HLCBuilder::default().build()`
fn default() -> Self {
HLCBuilder::default().build()
}
}
/// A physical clock relying on std::time::SystemTime::now().
///
/// It returns a NTP64 relative to std::time::UNIX_EPOCH (1st Jan 1970).
/// That's the default clock used by an [`HLC`] if [`HLCBuilder::with_clock()`] is not called.
///
#[inline]
#[cfg(feature = "std")]
pub fn system_time_clock() -> NTP64 {
NTP64::from(SystemTime::now().duration_since(UNIX_EPOCH).unwrap())
}
/// A dummy clock that returns a NTP64 initialized with the value 0.
/// Suitable to use in no_std environments where std::time::{SystemTime, UNIX_EPOCH} are not available.
/// If the feature `std` is disabled, that's the default clock used by an [`HLC`] if [`HLCBuilder::with_clock()`] is not called.
/// Notice that this means that the [`HLC`] will use incremental timestamps starting from 0.
#[inline]
pub fn zero_clock() -> NTP64 {
NTP64(0)
}
#[cfg(test)]
mod tests {
use crate::*;
use async_std::sync::Arc;
use async_std::task;
use core::convert::TryFrom;
use core::time::Duration;
use futures::join;
fn is_sorted(vec: &[Timestamp]) -> bool {
let mut it = vec.iter();
let mut ts = it.next().unwrap();
for next in it {
if next <= ts {
return false;
};
ts = next;
}
true
}
#[test]
fn hlc_parallel() {
use alloc::vec::Vec;
task::block_on(async {
let id0: ID = ID::try_from([0x01]).unwrap();
let id1: ID = ID::try_from([0x02]).unwrap();
let id2: ID = ID::try_from([0x03]).unwrap();
let id3: ID = ID::try_from([0x04]).unwrap();
let hlc0 = Arc::new(HLCBuilder::new().with_id(id0).build());
let hlc1 = Arc::new(HLCBuilder::new().with_id(id1).build());
let hlc2 = Arc::new(HLCBuilder::new().with_id(id2).build());
let hlc3 = Arc::new(HLCBuilder::new().with_id(id3).build());
// Make 4 tasks to generate 10000 timestamps each with distinct HLCs,
// and also to update each other HLCs
const NB_TIME: usize = 10000;
let t0 = {
let hlc0 = hlc0.clone();
let hlc1 = hlc1.clone();
task::spawn(async move {
let mut times: Vec<Timestamp> = Vec::with_capacity(10000);
for _ in 0..NB_TIME {
let ts = hlc0.new_timestamp();
assert!(hlc1.update_with_timestamp(&ts).is_ok());
times.push(ts)
}
times
})
};
let t1 = {
let hlc1 = hlc1.clone();
let hlc2 = hlc2.clone();
task::spawn(async move {
let mut times: Vec<Timestamp> = Vec::with_capacity(10000);
for _ in 0..NB_TIME {
let ts = hlc1.new_timestamp();
assert!(hlc2.update_with_timestamp(&ts).is_ok());
times.push(ts)
}
times
})
};
let t2 = {
let hlc2 = hlc3.clone();
let hlc3 = hlc3.clone();
task::spawn(async move {
let mut times: Vec<Timestamp> = Vec::with_capacity(10000);
for _ in 0..NB_TIME {
let ts = hlc2.new_timestamp();
assert!(hlc3.update_with_timestamp(&ts).is_ok());
times.push(ts)
}
times
})
};
let t3 = {
let hlc3 = hlc3.clone();
let hlc0 = hlc0.clone();
task::spawn(async move {
let mut times: Vec<Timestamp> = Vec::with_capacity(10000);
for _ in 0..NB_TIME {
let ts = hlc3.new_timestamp();
assert!(hlc0.update_with_timestamp(&ts).is_ok());
times.push(ts)
}
times
})
};
let vecs = join!(t0, t1, t2, t3);
// test that each timeseries is sorted (i.e. monotonic time)
assert!(is_sorted(&vecs.0));
assert!(is_sorted(&vecs.1));
assert!(is_sorted(&vecs.2));
assert!(is_sorted(&vecs.3));
// test that there is no duplicate amongst all timestamps
let mut all_times: Vec<Timestamp> = vecs
.0
.into_iter()
.chain(vecs.1)
.chain(vecs.2)
.chain(vecs.3)
.collect::<Vec<Timestamp>>();
assert_eq!(NB_TIME * 4, all_times.len());
all_times.sort();
all_times.dedup();
assert_eq!(NB_TIME * 4, all_times.len());
});
}
#[test]
fn hlc_update_with_timestamp() {
let id: ID = ID::rand();
let hlc = HLCBuilder::new().with_id(id).build();
// Test that updating with an old Timestamp don't break the HLC
let past_ts = Timestamp::new(Default::default(), id);
let now_ts = hlc.new_timestamp();
assert!(hlc.update_with_timestamp(&past_ts).is_ok());
assert!(hlc.new_timestamp() > now_ts);
// Test that updating with a Timestamp exceeding the delta is refused
let now_ts = hlc.new_timestamp();
let future_time = now_ts.get_time() + NTP64::from(Duration::from_millis(1000));
let future_ts = Timestamp::new(future_time, id);
assert!(hlc.update_with_timestamp(&future_ts).is_err())
}
}