1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
//
// Copyright (c) 2017, 2020 ADLINK Technology Inc.
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
use alloc::string::String;
use core::fmt;
use core::ops::{Add, AddAssign, Sub, SubAssign};
use core::time::Duration;
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use {
core::str::FromStr,
humantime::format_rfc3339_nanos,
std::time::{SystemTime, UNIX_EPOCH},
};
// maximal number of seconds that can be represented in the 32-bits part
const MAX_NB_SEC: u64 = (1u64 << 32) - 1;
// number of NTP fraction per second (2^32)
const FRAC_PER_SEC: u64 = 1u64 << 32;
// Bit-mask for the fraction of a second part within an NTP timestamp
const FRAC_MASK: u64 = 0xFFFF_FFFFu64;
// number of nanoseconds in 1 second
const NANO_PER_SEC: u64 = 1_000_000_000;
/// A NTP 64-bits format as specified in
/// [RFC-5909](https://tools.ietf.org/html/rfc5905#section-6)
///
/// ```text
/// 0 1 2 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Seconds |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Fraction |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
///
/// The 1st 32-bits part is the number of second since the EPOCH of the physical clock,
/// and the 2nd 32-bits part is the fraction of second.
/// In case it's part of a [`crate::Timestamp`] generated by an [`crate::HLC`] the last few bits
/// of the Fraction part are replaced by the HLC logical counter.
/// The size of this counter is currently hard-coded as [`crate::CSIZE`].
///
/// ## Conversion to/from String
/// 2 different String representations are supported:
/// 1. **as an unsigned integer in decimal format**
/// - Such conversion is lossless and thus bijective.
/// - NTP64 to String: use [`std::fmt::Display::fmt()`] or [`std::string::ToString::to_string()`].
/// - String to NTP64: use [`std::str::FromStr::from_str()`]
/// 2. **as a [RFC3339](https://www.rfc-editor.org/rfc/rfc3339.html#section-5.8) (human readable) format**:
/// - Such conversion loses some precision because of rounding when conferting the fraction part to nanoseconds
/// - As a consequence it's not bijective: a NTP64 converted to RFC3339 String and then converted back to NTP64 might result to a different time.
/// - NTP64 to String: use [`std::fmt::Display::fmt()`] with the alternate flag (`{:#}`) or [`NTP64::to_string_rfc3339_lossy()`].
/// - String to NTP64: use [`NTP64::parse_rfc3339()`]
///
/// ## On EPOCH
/// This timestamp in actually similar to a [`std::time::Duration`], as it doesn't define an EPOCH.
/// Only [`NTP64::to_system_time()`], [`NTP64::to_string_rfc3339_lossy()`] and [`std::fmt::Display::fmt()`] (when using `{:#}` alternate flag)
/// operations assume that it's relative to UNIX_EPOCH (1st Jan 1970) to display the timestamp in RFC-3339 format.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Default, Deserialize, Serialize)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct NTP64(pub u64);
impl NTP64 {
/// Returns this NTP64 as a u64.
#[inline]
pub fn as_u64(&self) -> u64 {
self.0
}
/// Returns this NTP64 as a f64 in seconds.
///
/// The integer part of the f64 is the NTP64's Seconds part.
/// The decimal part of the f64 is the result of a division of NTP64's Fraction part divided by 2^32.
/// Considering the probable large number of Seconds (for a time relative to UNIX_EPOCH), the precision of the resulting f64 might be in the order of microseconds.
/// Therefore, it should not be used for comparison. Directly comparing [NTP64] objects is preferable.
#[inline]
pub fn as_secs_f64(&self) -> f64 {
let secs: f64 = self.as_secs() as f64;
let subsec: f64 = ((self.0 & FRAC_MASK) as f64) / FRAC_PER_SEC as f64;
secs + subsec
}
/// Returns the 32-bits seconds part.
#[inline]
pub fn as_secs(&self) -> u32 {
(self.0 >> 32) as u32
}
/// Returns the 32-bits fraction of second part converted to nanoseconds.
#[inline]
pub fn subsec_nanos(&self) -> u32 {
let frac = self.0 & FRAC_MASK;
((frac * NANO_PER_SEC) / FRAC_PER_SEC) as u32
}
/// Convert to a [`Duration`].
#[inline]
pub fn to_duration(self) -> Duration {
Duration::new(self.as_secs().into(), self.subsec_nanos())
}
/// Convert to a [`SystemTime`] (making the assumption that this NTP64 is relative to [`UNIX_EPOCH`]).
#[inline]
#[cfg(feature = "std")]
pub fn to_system_time(self) -> SystemTime {
UNIX_EPOCH + self.to_duration()
}
/// Convert to a RFC3339 time representation with nanoseconds precision.
/// e.g.: `"2024-07-01T13:51:12.129693000Z"``
#[cfg(feature = "std")]
pub fn to_string_rfc3339_lossy(&self) -> String {
format_rfc3339_nanos(self.to_system_time()).to_string()
}
/// Parse a RFC3339 time representation into a NTP64.
#[cfg(feature = "std")]
pub fn parse_rfc3339(s: &str) -> Result<Self, ParseNTP64Error> {
match humantime::parse_rfc3339(s) {
Ok(time) => time
.duration_since(UNIX_EPOCH)
.map(NTP64::from)
.map_err(|e| ParseNTP64Error {
cause: format!("Failed to parse '{s}' : {e}"),
}),
Err(_) => Err(ParseNTP64Error {
cause: format!("Failed to parse '{s}' : invalid RFC3339 format"),
}),
}
}
}
impl Add for NTP64 {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self {
Self(self.0 + other.0)
}
}
impl<'a> Add<NTP64> for &'a NTP64 {
type Output = <NTP64 as Add<NTP64>>::Output;
#[inline]
fn add(self, other: NTP64) -> <NTP64 as Add<NTP64>>::Output {
Add::add(*self, other)
}
}
impl Add<&NTP64> for NTP64 {
type Output = <NTP64 as Add<NTP64>>::Output;
#[inline]
fn add(self, other: &NTP64) -> <NTP64 as Add<NTP64>>::Output {
Add::add(self, *other)
}
}
impl Add<&NTP64> for &NTP64 {
type Output = <NTP64 as Add<NTP64>>::Output;
#[inline]
fn add(self, other: &NTP64) -> <NTP64 as Add<NTP64>>::Output {
Add::add(*self, *other)
}
}
impl Add<u64> for NTP64 {
type Output = Self;
#[inline]
fn add(self, other: u64) -> Self {
Self(self.0 + other)
}
}
impl AddAssign<u64> for NTP64 {
#[inline]
fn add_assign(&mut self, other: u64) {
*self = Self(self.0 + other);
}
}
impl Sub for NTP64 {
type Output = Self;
#[inline]
fn sub(self, other: Self) -> Self {
Self(self.0 - other.0)
}
}
impl<'a> Sub<NTP64> for &'a NTP64 {
type Output = <NTP64 as Sub<NTP64>>::Output;
#[inline]
fn sub(self, other: NTP64) -> <NTP64 as Sub<NTP64>>::Output {
Sub::sub(*self, other)
}
}
impl Sub<&NTP64> for NTP64 {
type Output = <NTP64 as Sub<NTP64>>::Output;
#[inline]
fn sub(self, other: &NTP64) -> <NTP64 as Sub<NTP64>>::Output {
Sub::sub(self, *other)
}
}
impl Sub<&NTP64> for &NTP64 {
type Output = <NTP64 as Sub<NTP64>>::Output;
#[inline]
fn sub(self, other: &NTP64) -> <NTP64 as Sub<NTP64>>::Output {
Sub::sub(*self, *other)
}
}
impl Sub<u64> for NTP64 {
type Output = Self;
#[inline]
fn sub(self, other: u64) -> Self {
Self(self.0 - other)
}
}
impl SubAssign<u64> for NTP64 {
#[inline]
fn sub_assign(&mut self, other: u64) {
*self = Self(self.0 - other);
}
}
impl fmt::Display for NTP64 {
/// By default formats the value as an unsigned integer in decimal format.
/// If the alternate flag `{:#}` is used, formats the value with RFC3339 representation with nanoseconds precision.
///
/// # Examples
/// ```
/// use uhlc::NTP64;
///
/// let t = NTP64(7386690599959157260);
/// println!("{t}"); // displays: 7386690599959157260
/// println!("{t:#}"); // displays: 2024-07-01T15:32:06.860479000Z
/// ```
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// if "{:#}" flag is specified, use RFC3339 representation
if f.alternate() {
#[cfg(feature = "std")]
return write!(f, "{}", format_rfc3339_nanos(self.to_system_time()));
#[cfg(not(feature = "std"))]
return write!(f, "{}", self.0);
} else {
write!(f, "{}", self.0)
}
}
}
impl fmt::Debug for NTP64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl From<Duration> for NTP64 {
fn from(duration: Duration) -> NTP64 {
let secs = duration.as_secs();
assert!(secs <= MAX_NB_SEC);
let nanos: u64 = duration.subsec_nanos().into();
NTP64((secs << 32) + ((nanos * FRAC_PER_SEC) / NANO_PER_SEC) + 1)
}
}
#[cfg(feature = "std")]
impl FromStr for NTP64 {
type Err = ParseNTP64Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
u64::from_str(s).map(NTP64).map_err(|_| ParseNTP64Error {
cause: format!("Invalid NTP64 time : '{s}' (must be a u64)"),
})
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct ParseNTP64Error {
pub cause: String,
}
mod tests {
#[test]
fn as_secs_f64() {
use crate::*;
let epoch = NTP64::default();
assert_eq!(epoch.as_secs_f64(), 0f64);
let epoch_plus_1 = NTP64(1);
assert!(epoch_plus_1 > epoch);
assert!(epoch_plus_1.as_secs_f64() > epoch.as_secs_f64());
// test that Timestamp precision is less than announced (3.5ns) in README.md
let epoch_plus_counter_max = NTP64(CMASK);
println!(
"Time precision = {} ns",
epoch_plus_counter_max.as_secs_f64() * (ntp64::NANO_PER_SEC as f64)
);
assert!(epoch_plus_counter_max.as_secs_f64() < 0.0000000035f64);
}
#[test]
fn bijective_to_string() {
use crate::*;
use rand::prelude::*;
use std::str::FromStr;
let mut rng = rand::thread_rng();
for _ in 0u64..10000 {
let t = NTP64(rng.gen());
assert_eq!(t, NTP64::from_str(&t.to_string()).unwrap());
}
}
#[test]
fn rfc3339_conversion() {
use crate::*;
use regex::Regex;
let rfc3339_regex = Regex::new(
r"^[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]T[0-9][0-9]:[0-9][0-9]:[0-9][0-9].[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]Z$"
).unwrap();
let now = SystemTime::now();
let t = NTP64::from(now.duration_since(UNIX_EPOCH).unwrap());
let rfc3339 = t.to_string_rfc3339_lossy();
assert_eq!(rfc3339, humantime::format_rfc3339_nanos(now).to_string());
assert!(rfc3339_regex.is_match(&rfc3339));
// Test that alternate format "{:#}" displays in RFC3339 format
let rfc3339_2 = format!("{t:#}");
assert_eq!(rfc3339_2, humantime::format_rfc3339_nanos(now).to_string());
assert!(rfc3339_regex.is_match(&rfc3339_2));
}
}